The nuclear orphan receptor Nr4a2 induces Foxp3 and regulates differentiation of CD4+ T cells

نویسندگان

  • Takashi Sekiya
  • Ikkou Kashiwagi
  • Naoko Inoue
  • Rimpei Morita
  • Shohei Hori
  • Herman Waldmann
  • Alexander Y. Rudensky
  • Hiroshi Ichinose
  • Daniel Metzger
  • Pierre Chambon
  • Akihiko Yoshimura
چکیده

Regulatory T cells (Tregs) have a central role in maintaining immune homoeostasis through various mechanisms. Although the Forkhead transcription factor Foxp3 defines the Treg cell lineage and functions, the molecular mechanisms of Foxp3 induction and maintenance remain elusive. Here we show that Foxp3 is one of the direct targets of Nr4a2. Nr4a2 binds to regulatory regions of Foxp3, where it mediates permissive histone modifications. Ectopic expression of Nr4a2 imparts Treg-like suppressive activity to naïve CD4(+) T cells by inducing Foxp3 and by repressing cytokine production, including interferon-γ and interleukin-2. Deletion of Nr4a2 in T cells attenuates induction of Tregs and causes aberrant induction of Th1, leading to the exacerbation of colitis. Nr4a2-deficeint Tregs are prone to lose Foxp3 expression and have attenuated suppressive ability both in vitro and in vivo. Thus, Nr4a2 has the ability to maintain T-cell homoeostasis by regulating induction, maintenance and suppressor functions of Tregs, and by repression of aberrant Th1 induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...

متن کامل

Modulation of CD4+ T Cell Subsets by Euphorbia microciadia and Euphorbia osyridea Plant Extracts

Background: Euphorbia plants are traditionally used in folk medicine for infections, inflammation, and cancer. Objectives: To investigate the effects of the butanolic extracts of Euphorbia micorociadia and Euphorbia osyridea on specific transcription factors and cytokines expression of T cell subsets. Methods: Activated mouse splenocytes were cultured in the presence of non-cytotoxic concentrat...

متن کامل

Immune suppressive activity and lack of T helper differentiation are differentially regulated in natural regulatory T cells.

The mechanism for controlling Th cytokine expression in natural regulatory T (nTreg) cells is unclear. Here, it was found that under polarizing conditions Foxp3 did not affect Th1 cell, partially inhibited Th17 cell, but greatly inhibited Th2 cell differentiation of conventional CD4 T cells. Under the polarizing conditions, nTreg cells failed to differentiate into Th2 and Th17 cells, but differ...

متن کامل

Induction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells

Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...

متن کامل

The orphan nuclear receptor NR4A2 is part of a p53–microRNA-34 network

Nuclear receptor subfamily 4 group A member 2 (NR4A2) is an orphan nuclear receptor that is over-expressed in cancer and promotes cell proliferation, migration, transformation, and chemoresistance. Increased expression and function of NR4A2 have been attributed to various signaling pathways, but little is known about microRNA (miRNA) regulation of NR4A2 in cancer. To investigate the posttranscr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011